Proof That $\sqrt{2}$ Is Irrational

This document proves that $\sqrt{2}$ is irrational (i.e. one which can't be expressed as a fraction of one integer over another). The technique used is one of *proof by contradiction*. It is a technique widely used by mathematicians, but most A Level students will not have seen it.

Proof

We are trying to prove that $\sqrt{2}$ cannot be expressed as a fraction. If we are trying to prove that something *cannot* be true, it is often useful to assume that it *is* true and attempt to prove a contradiction. So let us assume that

$$\sqrt{2} = \frac{a}{b}$$

where $\frac{a}{b}$ is a fraction in its lowest form.

Let us play around with this formula and see what we can come up with.

$$\sqrt{2} = \frac{a}{b}$$

$$2 = \frac{a^2}{b^2} \qquad \text{squaring both sides}$$

$$2b^2 = a^2 \qquad \text{multiplying by } b^2$$

So a^2 is an even number $\Rightarrow a$ is an even number. We can therefore express a as 2c where c is also an integer.

$$2b^{2} = a^{2}$$

$$2b^{2} = (2c)^{2}$$
 substituting 2c for a

$$2b^{2} = 4c^{2}$$
 getting rid of brackets

$$b^{2} = 2c^{2}$$
 cancelling the 2

We can now see that b^2 is also and even number $\Rightarrow b$ is even.

But we have assumed that $\frac{a}{b}$ is a fraction in its lowest form, which it clearly is not since both a and b are even numbers (and could therefore be cancelled further). So we have a contradiction and have to conclude that our original assumption that $\sqrt{2}$ can be expressed as a fraction is false $\Rightarrow \sqrt{2}$ is irrational.